\qquad
Form: A \qquad

True/False: Indicate whether the statement is true or false. Questions are worth 2 points each.

1. T/F The number of speeding tickets you received last year is an example of a discrete random variable.
2. T / F The sum of all probabilities in any discrete probability distribution is not always exactly one, since some of the probabilities may be slightly larger than one.
3. T/F A binomial experiment always has at least three possible outcomes to each trial.
4. T / F Every binomial distribution may be approximated reasonably by an appropriate normal distribution.
5. T / F All normal probability distributions are symmetric about zero.
6. T / F The area to the right of $z=1.52$ is 0.4357
7. T/F Assume that x is a normally distributed random variable with a mean of μ and standard deviation of σ. If x is converted to the standard score z, then given any three of the values of x, μ, σ, and z, we can always find the fourth value.
8. T / F If the random variable z is the standard normal score, then the area to the left of $z=0.50$ is equal to the area to the right of $z=-0.50$.
9. T / F As the sample size increases, the sampling distribution of the sample means from a normal distribution has a normal curve that becomes more peaked.
10. T / F Central Limit Theorem states that the sampling distribution of sample means will more closely resemble the normal distribution regardless of the sample size.

Multiple Choice: Identify the choice that best completes the statement or answers the question. 5 points each.
_c__ 11. Given that the numbers 1 through 6 are equally likely to occur, what is $\mathrm{P}(x \leq 2)$?
a. Cannot be determined since we do not know the probability for each number.
b. $1 / 2$
c. $1 / 3$
d. $1 / 6$
_b__12. Which of the following statements is true?
a. A probability distribution of a discrete random variable x cannot be presented graphically.
b. A probability distribution of a discrete random variable x can be presented graphically as a line graph or probability histogram.
c. $\mathrm{P}(x)=x / 12$ for $x=1,2,3$, and 4 is a probability function of a discrete random variable x.
d. None of the above
_a__13. Find all values of k so that the following is a probability distribution:

x	$P(x)$
1	0.15
2	$2 k$
3	0.52
4	k

a. 0.11
b. 0.50
c. 0.22
d. 1.00
_b__14. Find the mean of the following distribution:

x	$P(x)$
1	0.25
2	0.25
3	0.25
4	0.25

a. 1.12
b. 2.50
c. 0.25
d. 1.00
_c__15. Which of the following is true regarding a binomial distribution for $n=50$ and $p=0.4$?
a. The mean equals 25 .
b. The variance equals 0.24 .
c. The probability for $x=50$ is 1.26×10^{-20}.
d. The distribution is not symmetrical.
_b__16. The binomial coefficient $\binom{10}{3}$ equals which of the following?
a. $10!/ 3$!
b. 120
c. 720
d. 30
_c__17. Consider the binomial random variable x with $n=50$ and $p=0.5$. Suppose we want to use a normal approximation to find the probability of at least 30 successes. A reasonable approximation would be obtained by computing:
a. $\mathrm{P}(29.5<x<30.5)$.
b. $\mathrm{P}(x<30.5)$
c. $\mathrm{P}(x>29.5)$
d. $\mathrm{P}(59.5<x<100.5)$
_c__18. If 15% of the population is left-handed, find the probability that in a class of 35 students that 3 or fewer are left-handed.
a. 0.15
b. 0.45
c. 0.20
d. 0.80
_b__19. If the random variable z is the standard normal score, which of the following probabilities could easily be determined without referring to a table?
a. $\mathrm{P}(z>2.86)$
b. $\mathrm{P}(z<0)$
c. $\mathrm{P}(z<-1.82)$
d. $\mathrm{P}(z>-0.5)$
_b__20. The area under the normal curve between $z=-1.0$ and $z=-2.0$ is
a. 0.3413 .
b. 0.1359 .
c. 0.4772 .
d. 0.0228 .
_d__21. Find z for the shaded area represented.

a. 0.11
b. 0.23
c. 0.51
d. 0.74
__d_22. Scores on a computer science aptitude test are normally distributed. The standard deviation of the distribution is 6.0 , and the 95 th percentile for the test is 92 . Find the mean score for this test.
a. 1.65
b. 0.50
c. 101.9
d. 82.1
_c_23. If the random variable z is the standard normal score, then the area to the right of $z=-0.64$ is equal to the area to the left of:
a. $z=0.24$
b. $z=0.76$
c. $z=0.64$
d. $z=-0.10$
_b_24. The random variable x is normally distributed with a mean of 75 and a standard deviation of 15.0 . For this distribution, the twenty-third percentile, P_{23}, is
a. 65.7.
b. 63.9.
c. 86.1.
d. 84.3.
_b__25. Consider a large population with a mean of 100 and a standard deviation of 21 . A random sample of size 36 is taken from this population. The standard error of the sampling distribution of sample mean is equal to:
a. $\quad 16.67$.
b. 3.50 .
c. 12.25 .
d. 1.71.
_c__26. A soft drink bottling machine is set to dispense soft drink into containers labeled 16 ounces. While the actual quantities vary, they are normally distributed with a mean of 16.1 ounces and a standard deviation of 0.015 ounces. If a random sample of 25 bottles was selected, then 90% of the sample would have average weights between
a. 15.275 and 16.925 ounces
b. 15.770 and 16.430 ounces
c. 16.095 and 16.105 ounces
d. 15.875 and 16.325 ounces

